29 research outputs found

    Upper-limb Geometric MyoPassivity Map for Physical Human-Robot Interaction

    Full text link
    The intrinsic biomechanical characteristic of the human upper limb plays a central role in absorbing the interactive energy during physical human-robot interaction (pHRI). We have recently shown that based on the concept of ``Excess of Passivity (EoP)," from nonlinear control theory, it is possible to decode such energetic behavior for both upper and lower limbs. The extracted knowledge can be used in the design of controllers for optimizing the transparency and fidelity of force fields in human-robot interaction and in haptic systems. In this paper, for the first time, we investigate the frequency behavior of the passivity map for the upper limb when the muscle co-activation was controlled in real-time through visual electromyographic feedback. Five healthy subjects (age: 27 +/- 5) were included in this study. The energetic behavior was evaluated at two stimulation frequencies at eight interaction directions over two controlled muscle co-activation levels. Electromyography (EMG) was captured using the Delsys Wireless Trigno system. Results showed a correlation between EMG and EoP, which was further altered by increasing the frequency. The proposed energetic behavior is named the Geometric MyoPassivity (GMP) map. The findings indicate that the GMP map has the potential to be used in real-time to quantify the absorbable energy, thus passivity margin of stability for upper limb interaction during pHRI

    From Unstable Contacts to Stable Control: A Deep Learning Paradigm for HD-sEMG in Neurorobotics

    Full text link
    In the past decade, there has been significant advancement in designing wearable neural interfaces for controlling neurorobotic systems, particularly bionic limbs. These interfaces function by decoding signals captured non-invasively from the skin's surface. Portable high-density surface electromyography (HD-sEMG) modules combined with deep learning decoding have attracted interest by achieving excellent gesture prediction and myoelectric control of prosthetic systems and neurorobots. However, factors like pixel-shape electrode size and unstable skin contact make HD-sEMG susceptible to pixel electrode drops. The sparse electrode-skin disconnections rooted in issues such as low adhesion, sweating, hair blockage, and skin stretch challenge the reliability and scalability of these modules as the perception unit for neurorobotic systems. This paper proposes a novel deep-learning model providing resiliency for HD-sEMG modules, which can be used in the wearable interfaces of neurorobots. The proposed 3D Dilated Efficient CapsNet model trains on an augmented input space to computationally `force' the network to learn channel dropout variations and thus learn robustness to channel dropout. The proposed framework maintained high performance under a sensor dropout reliability study conducted. Results show conventional models' performance significantly degrades with dropout and is recovered using the proposed architecture and the training paradigm

    ViT-MDHGR: Cross-day Reliability and Agility in Dynamic Hand Gesture Prediction via HD-sEMG Signal Decoding

    Full text link
    Surface electromyography (sEMG) and high-density sEMG (HD-sEMG) biosignals have been extensively investigated for myoelectric control of prosthetic devices, neurorobotics, and more recently human-computer interfaces because of their capability for hand gesture recognition/prediction in a wearable and non-invasive manner. High intraday (same-day) performance has been reported. However, the interday performance (separating training and testing days) is substantially degraded due to the poor generalizability of conventional approaches over time, hindering the application of such techniques in real-life practices. There are limited recent studies on the feasibility of multi-day hand gesture recognition. The existing studies face a major challenge: the need for long sEMG epochs makes the corresponding neural interfaces impractical due to the induced delay in myoelectric control. This paper proposes a compact ViT-based network for multi-day dynamic hand gesture prediction. We tackle the main challenge as the proposed model only relies on very short HD-sEMG signal windows (i.e., 50 ms, accounting for only one-sixth of the convention for real-time myoelectric implementation), boosting agility and responsiveness. Our proposed model can predict 11 dynamic gestures for 20 subjects with an average accuracy of over 71% on the testing day, 3-25 days after training. Moreover, when calibrated on just a small portion of data from the testing day, the proposed model can achieve over 92% accuracy by retraining less than 10% of the parameters for computational efficiency

    HYDRA-HGR: A Hybrid Transformer-based Architecture for Fusion of Macroscopic and Microscopic Neural Drive Information

    Full text link
    Development of advance surface Electromyogram (sEMG)-based Human-Machine Interface (HMI) systems is of paramount importance to pave the way towards emergence of futuristic Cyber-Physical-Human (CPH) worlds. In this context, the main focus of recent literature was on development of different Deep Neural Network (DNN)-based architectures that perform Hand Gesture Recognition (HGR) at a macroscopic level (i.e., directly from sEMG signals). At the same time, advancements in acquisition of High-Density sEMG signals (HD-sEMG) have resulted in a surge of significant interest on sEMG decomposition techniques to extract microscopic neural drive information. However, due to complexities of sEMG decomposition and added computational overhead, HGR at microscopic level is less explored than its aforementioned DNN-based counterparts. In this regard, we propose the HYDRA-HGR framework, which is a hybrid model that simultaneously extracts a set of temporal and spatial features through its two independent Vision Transformer (ViT)-based parallel architectures (the so called Macro and Micro paths). The Macro Path is trained directly on the pre-processed HD-sEMG signals, while the Micro path is fed with the p-to-p values of the extracted Motor Unit Action Potentials (MUAPs) of each source. Extracted features at macroscopic and microscopic levels are then coupled via a Fully Connected (FC) fusion layer. We evaluate the proposed hybrid HYDRA-HGR framework through a recently released HD-sEMG dataset, and show that it significantly outperforms its stand-alone counterparts. The proposed HYDRA-HGR framework achieves average accuracy of 94.86% for the 250 ms window size, which is 5.52% and 8.22% higher than that of the Macro and Micro paths, respectively

    Therapist-in-the-Loop robotics-assisted mirror rehabilitation therapy: An Assist-as-Needed framework

    Full text link
    framework for robotics-assisted mirror rehabilitation therapy integrated with adaptive Assist-as-Needed (ANN) training, to be adjusted based on the impairment and disability level of the patient’s affected limb. Closed-loop system stability has been investigated using a combination of the Circle Criterion and the Small-Gain Theorem to account both for time-delay and the time-varying adaptive ANN training. Experiments to investigate the performance of the proposed framework are reported. I

    Force-Aware Interface via Electromyography for Natural VR/AR Interaction

    Full text link
    While tremendous advances in visual and auditory realism have been made for virtual and augmented reality (VR/AR), introducing a plausible sense of physicality into the virtual world remains challenging. Closing the gap between real-world physicality and immersive virtual experience requires a closed interaction loop: applying user-exerted physical forces to the virtual environment and generating haptic sensations back to the users. However, existing VR/AR solutions either completely ignore the force inputs from the users or rely on obtrusive sensing devices that compromise user experience. By identifying users' muscle activation patterns while engaging in VR/AR, we design a learning-based neural interface for natural and intuitive force inputs. Specifically, we show that lightweight electromyography sensors, resting non-invasively on users' forearm skin, inform and establish a robust understanding of their complex hand activities. Fuelled by a neural-network-based model, our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration. Through an interactive psychophysical study, we show that human perception of virtual objects' physical properties, such as stiffness, can be significantly enhanced by our interface. We further demonstrate that our interface enables ubiquitous control via finger tapping. Ultimately, we envision our findings to push forward research towards more realistic physicality in future VR/AR.Comment: ACM Transactions on Graphics (SIGGRAPH Asia 2022

    A Deep Learning Sequential Decoder for Transient High-Density Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer Learning

    Full text link
    Hand gesture recognition (HGR) has gained significant attention due to the increasing use of AI-powered human-computer interfaces that can interpret the deep spatiotemporal dynamics of biosignals from the peripheral nervous system, such as surface electromyography (sEMG). These interfaces have a range of applications, including the control of extended reality, agile prosthetics, and exoskeletons. However, the natural variability of sEMG among individuals has led researchers to focus on subject-specific solutions. Deep learning methods, which often have complex structures, are particularly data-hungry and can be time-consuming to train, making them less practical for subject-specific applications. In this paper, we propose and develop a generalizable, sequential decoder of transient high-density sEMG (HD-sEMG) that achieves 73% average accuracy on 65 gestures for partially-observed subjects through subject-embedded transfer learning, leveraging pre-knowledge of HGR acquired during pre-training. The use of transient HD-sEMG before gesture stabilization allows us to predict gestures with the ultimate goal of counterbalancing system control delays. The results show that the proposed generalized models significantly outperform subject-specific approaches, especially when the training data is limited, and there is a significant number of gesture classes. By building on pre-knowledge and incorporating a multiplicative subject-embedded structure, our method comparatively achieves more than 13% average accuracy across partially observed subjects with minimal data availability. This work highlights the potential of HD-sEMG and demonstrates the benefits of modeling common patterns across users to reduce the need for large amounts of data for new users, enhancing practicality
    corecore